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Abstract
We consider the master Lagrangian of Deser and Jackiw, interpolating between
the self-dual and the Maxwell–Chern–Simons Lagrangian, and quantize it
following the symplectic approach as well as the traditional Dirac scheme.
We demonstrate the equivalence of these procedures in the subspace of the
second-class constraints. We then proceed to embed this mixed first- and
second-class system into an extended first-class system within the framework
of both approaches, and construct the corresponding generator for this extended
gauge symmetry in both formulations.

PACS numbers: 11.10.Ef, 11.10.Kk, 11.15.−q

1. Introduction

The traditional Dirac quantization method (DQM) [1] has been widely used in order to
quantize Hamiltonian systems involving first- and second-class constraints. The resulting
Dirac brackets defined on the subspace of the constraints may however be field dependent and
nonlocal, and could thus pose serious ordering problems for the quantization of the theory.
On the other hand, the Becci–Rouet–Stora–Tyutin (BRST) [2, 3] procedure of first turning the
second-class constraints into first-class ones along the lines originally established by Batalin,
Fradkin and Vilkovisky [4, 5], and then reformulated in a more tractable and elegant version
by Batalin, Fradkin and Tyutin (BFT) [6], does not suffer from these difficulties, as it relies on
a simple Poisson bracket structure. As a result, the embedding of second-class systems into
first-class ones (gauge theories) has received much attention in the past years, and the DQM
improved in this way has been applied to a number of models [7–17] in order to obtain the
corresponding Wess–Zumino (WZ) actions [18, 19].

On the other hand, the traditional Dirac approach [1] has been criticized for introducing
‘superfluous’ (primary) constraints. As a result, an alternative approach based on the
symplectic structure of phase space has been proposed in [20]. The advantage of such
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an approach in the case of first-order Lagrangians such as Chern–Simons theories has in
particular been emphasized by Faddeev and Jackiw [20]. This symplectic scheme has been
worked out in considerable detail in a series of papers [21], and has been applied to a number
of models [21, 22]. It has further been extended recently to implement the improved DQM
embedding program in the context of the symplectic formalism [23–25].

In this paper we illustrate, for the case of the master Lagrangian of Deser and Jackiw (DJ)
[26], how the embedding of Hamiltonian systems with first- and second-class constraints into
an extended gauge theory is realized in the context of the improved DQM, on one hand, and
the improved symplectic approach, on the other.

The paper is organized as follows. In section 2, we briefly discuss the self-dual master
model within the framework of the standard and the improved DQMs, where some of the
degrees of freedom have been gauged. In section 3, we apply the gauge non-invariant
symplectic formalism [20, 21] to this model, and in section 4 we then show how the improved
DQM program for this master Lagrangian can be realized in the framework of the symplectic
formalism by making a suitable ansatz for the Wess–Zumino term in the first-order formulation,
respecting Lorentz invariance. Our conclusion is given in section 5. We leave it for appendix A
to show how the improved DQM program can be used to turn all constraints of the DJ-master
Lagrangian into first-class constraints. In appendix B we present the BFT construction of the
involutive Hamiltonian of section 2 as an alternative to the procedure followed in that section.
Finally, in appendix C we demonstrate the one-to-one correspondence between the symplectic
approach and the Hamiltonian Dirac approach in the two cases.

2. Dirac quantization method

2.1. Standard Dirac quantization method

In this section, we consider the massive self-dual model Lagrangian [26]

L0 = m

2
fµf µ − 1

2
εµνλf

µ∂νAλ − 1

2
εµνλA

µ∂νf λ +
1

2
εµνλA

µ∂νAλ. (2.1)

The canonical momenta conjugate to the fields f µ and Aµ are given by

π
f

0 = 0 π
f

i = − 1
2εijA

j

(2.2)

πA
0 = 0 πA

i = − 1
2εijf

j + 1
2εijA

j

with the Poisson algebra
{
f µ(x), π

f
ν (y)

} = {
Aµ(x), πA

ν (y)
} = δµ

ν δ(x − y). The canonical
Hamiltonian then reads

Hc =
∫

d2x
[
−m

2
fµf µ + εij f

0∂iAj + εijA
0(∂if j − ∂iAj )

]
. (2.3)

The primary constraints following from the definition of the canonical momenta, are

φ
f

0 ≡ π
f

0 ≈ 0 φ
f

i ≡ π
f

i + 1
2εijA

j ≈ 0
(2.4)

φA
0 ≡ πA

0 ≈ 0 φA
i ≡ πA

i + 1
2εijf

j − 1
2εijA

j ≈ 0

with the corresponding primary Hamiltonian Hp,

Hp = Hc +
∫

d2x

2∑
µ=0

(
v

µ

f φf
µ + v

µ

AφA
µ

)
. (2.5)

Persistence in time of the primary constraints leads to the secondary constraints

ϕf ≡ mf 0 − εij ∂
iAj ≈ 0 ϕA ≡ −εij (∂

if j − ∂iAj ) ≈ 0. (2.6)
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The constraints φ
f

i and φA
i fix the corresponding Lagrange multipliers to be vi

f = ∂if 0+mεijfj

and vi
A = ∂iA0 + mεijfj , respectively. The Lagrange multiplier v0

f is determined by the time
evolution of the constraint ϕf with the primary Hamiltonian to be v0

f = ∂if
i , while the

multiplier v0
A remains undetermined. The fact of having an undetermined Lagrange multiplier

v0
A reflects the existence of a gauge symmetry related to the fields Aµ. Indeed, with the

redefinition [27] of the constraint ϕA → ωA = ϕA + ∂iφA
i , we see that ωA is first class and is

the generator of the gauge transformation, Ai → Ai + ∂iλ.
We could now follow the BFT procedure in order to turn all constraints into first-class ones.

This is left for appendix A. Here we are primarily interested in establishing the connection
between the BFT embedding and the symplectic embedding procedures [25]. As it turns out
(see sections 3 and 4), this connection is given in the subspace where the constraints φ

f

i = 0
and φA

i = 0 are implemented strongly. In this subspace, we are then left with two first-class
constraints, φA

0 ≈ 0, ϕA ≈ 0, and two second-class ones, φ
f

0 ≈ 0, ϕf ≈ 0. We construct the
corresponding Dirac brackets in terms of the inverse of the matrix 
 defined in terms of the
Poisson brackets of

{
φ

f

i , φA
j

}
:


(x, y) =
(

0 ε

ε −ε

)
δ2(x − y) (2.7)

where

ε =
(

0 1
−1 0

)
. (2.8)

For the corresponding nonvanishing Dirac brackets, computed in the standard way, we have{
A0, πA

0

}
D

= δ2(x − y)
{
f 0, π

f

0

}
D

= δ2(x − y)

{f i, f j }D = −εijδ2(x − y) {f i, Aj }D = −εijδ2(x − y){
Ai, πA

j

}
D

= 1
2δi

j δ
2(x − y)

{
f i, π

f

j

}
D

= 1
2δi

j δ
2(x − y){

f i, πA
j

}
D

= 1
2δi

j δ
2(x − y)

(2.9)

where we have used the convention ε12 = ε12 = 1 and εikε
kj = −δ

j

i .

2.2. Improved Dirac quantization method

Following the improved DQM [7–16], we now proceed to embed the model into a gauge
theory with respect to the above Dirac brackets, by extending phase space to include a pair of
(canonically conjugate) auxiliary fields �i , satisfying the Poisson brackets

{�i(x),�j(y)} = εij δ2(x − y). (2.10)

Denote the second-class constraints
(
φ

f

0 , ϕf
)

by
{
�

f

i

}
, i = 1, 2. The first-class constraints

�̃
f

i are now constructed as a power series in the auxiliary fields as follows,

�̃
f

i = �
f

i +
∞∑

n=1

�
(n)

i (2.11)

where �
(n)

i , n = 1, . . . ,∞ are homogeneouspolynomials in the auxiliary fields �i of degree n,
to be determined by the requirement that the constraints �̃

f

i be strongly involutive:{
�̃

f

i (x), �̃
f

j (y)
}

D
= 0. (2.12)
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Making the ansatz,

�
(1)
i (x) =

∫
d2yXij(x, y)�j(y) (2.13)

and substituting this ansatz into (2.11), the requirement (2.12) leads to the simple solution
Xij (x, y) = √

mδij δ
2(x − y). There are no higher order contributions to (2.11). We thus

obtain for the first-class constraints

φ̃
f

0 = π
f

0 + mθ ϕ̃f = mf 0 − εij ∂
iAj + πθ (2.14)

satisfying the first-class algebra
{
φ̃

f

0 , ϕ̃f
} = 0, where we have replaced (�1,�2) by

(
√

mθ, πθ/
√

m), for convenience.
Applying this procedure to the original field variables, we similarly obtain for the

corresponding first-class fields

f̃ 0 = f 0 +
1

m
πθ f̃ i = f i + ∂iθ π̃

f

0 = π
f

0 + mθ (2.15)

satisfying
{
F
(
f̃ µ, π̃

f

0

)
, �̃

f

i

} = 0.
Since an arbitrary functional of the first-class fields is also first class, we can obtain the

first-class Hamiltonian H̃ c by simply replacing the original fields by the respective tilde-fields
[8, 28],

H̃ c =
∫

d2x

[
−m

2

(
f 0 +

1

m
πθ

)2

+
m

2
(f i + ∂iθ)2

+ εij

(
f 0 +

1

m
πθ

)
∂iAj + εijA

0(∂if j − ∂iAj )

]
(2.16)

along with the remaining first-class constraints now written in the extended phase space as

φ̃A
0 = π̃A

0 = πA
0 ϕ̃A = −εij ∂

i f̃ j + εij ∂
iÃj = −εij ∂

if j + εij ∂
iAj . (2.17)

Note that we have taken here Ãµ = Aµ. Indeed, Aµ and πA
0 remain unchanged by the

embedding procedure, which only involves the f µ-fields. Aµ thus continues to transform as
usual under gauge transformations, and is not first class. One may thus question our simple
substitution procedure for arriving at the first-class Hamiltonian (2.16). In appendix B we
show how this Hamiltonian is obtained following the usual BFT construction of the involutive
Hamiltonian [6].

Now, let us streamline the notation by defining(
�̃f

α

) = (
φ̃

f

0 , ϕ̃f
) (

�̃A
α

) = (
φ̃A

0 , ϕ̃A
)
. (2.18)

With respect to the Dirac brackets defined previously, we then have the relations of strong
involution, {

�̃f
α , �̃A

β

}
D

= 0
{
�̃f

α , H̃ c

}
D

= 0{
φ̃A

0 , H̃ c

}
D

= ϕ̃A
{
ϕ̃A, H̃ c

}
D

= 0.
(2.19)

Note that the first-class Hamiltonian (2.16) does not generate naturally the first-class
Gauss law constraints from the time evolution of the primary constraints φ̃

f

0 ≈ 0, φ̃A
0 ≈ 0.

For this to be the case, we introduce an additional term proportional to the first-class
constraints φ̃

f

0 into the Hamiltonian density H̃c, leading us to consider the equivalent first-class
Hamiltonian

H̃′
c = H̃c +

1

m
πθφ̃

f

0 . (2.20)
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We then obtain the Dirac brackets in the desired form:{
φ̃

f

0 (x), H̃ ′
c

}
D

= ϕ̃f (x) {ϕ̃f (x), H̃ ′
c} = 0{

φ̃A
0 (x), H̃ ′

c

}
D

= ϕ̃A(x) {ϕ̃A(x), H̃ ′
c} = 0.

(2.21)

We streamline further the notation by collecting all the first-class constraints into a single
vector:

�̃A = (
�̃f

α , �̃A
α

)
. (2.22)

Note here that the subscript A is the index running 1 to 4, while the superscript A in �̃A
α

denotes that these constraints are related to the field Aµ in the model.
We now seek the equivalent Lagrangian corresponding to the first-class Hamiltonian H̃′

c

in (2.20). To this end, we consider the partition function in the phase space as given by the
Faddeev–Senjanovic prescription [29],

Z = N

∫
Df µDAµDθDπθDπ

f

0 DπA
0

∏
A,B

δ(�̃A)δ(�B) det|{�̃A, �B}| ei
∫

d3xL

L = π
f

0 ḟ 0 − 1
2εijA

j ḟ i + πA
0 Ȧ0 +

(− 1
2εijf

j + 1
2εijA

j
)
Ȧi + πθ θ̇ − H̃′

c

(2.23)

where the gauge fixing conditions �B are chosen so that the determinant occurring in the
functional measure is nonvanishing.

Exponentiating the delta function δ(ϕ̃f ) as δ(ϕ̃f ) = ∫ Dξ ei
∫

d3xξϕ̃f , making a
transformation f 0 → f 0 + ξ and performing the integration over π

f

0 , πθ , π
A
0 and ξ , the

partition function (2.23) reduces to

Z = N

∫
Df µDAµDθ

∏
A,B

δ(�B) det|{�̃A, �B }| ei
∫

d3L (2.24)

where

L = m

2
(fµ + ∂µθ)(f µ + ∂µθ) − 1

2
εµνλ(f

µ + ∂µθ)∂νAλ

− 1

2
εµνλA

µ∂ν(f λ + ∂λθ) +
1

2
εµνλA

µ∂νAλ (2.25)

is the manifestly gauge invariant Stückelberg Lagrangian with the Stückelberg scalar θ .
Next, we construct the generator G of gauge transformations, following Dirac’s conjecture

[1], for the embedded self-dual master model in the standard way,

G =
∫

d3x
∑

α

[
εf
α �̃f

α + εA
α �̃A

α

]
(2.26)

where ε
f
α , εA

α are, in general, functions of phase space variables and �̃
f
α , �̃A

α are the first-class
constraints in equation (2.18). The infinitesimal gauge transformation for a function F of
phase space variables is then given by the relation of δF = {F,G}D , and leads to

δf 0 = ε
f

1 δf i = −∂iε
f

2 δA0 = εA
1 δAi = −∂iεA

2 δθ = ε
f

2 . (2.27)

The above gauge transformation involving four gauge parameters is a symmetry of the
Hamiltonian, but not of the Lagrangian. The generator G of the most general local symmetry
transformation of a Lagrangian must satisfy the master equation [30]

∂G

∂t
+ {G,HT } = 0 (2.28)

which, together with (2.26), implies the following well-known restrictions on the gauge
parameters and on the Lagrange multipliers in the primary Hamiltonian:

δvβ = dεβ

dt
− εA

(
V

β

A + vαC
β

αA

)
0 = dεb

dt
− εA

(
V b

A + vαCb
αA

)
. (2.29)
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Here the superscripts α, β (a, b) denote the primary (secondary) constraints, and V A
B , CA

BC

are the structure functions of the constrained Hamiltonian dynamics defined by {Hc, �̃A}D =
V B

A �̃B, {�̃A, �̃B}D = CC
AB�̃C , respectively. From (2.29) we obtain ε

f

1 = −dε
f

2

/
dt and

εA
1 = −dεA

2

/
dt . Thus the gauge transformations (2.27) reduce to

δf µ = −∂µε
f

2 δAµ = −∂µεA
2 δθ = ε

f

2 (2.30)

which evidently leaves the Stückelberg Lagrangian (2.25) invariant.

3. Constraint structure of master Lagrangian in symplectic approach

In this and the following sections, we show that the results obtained in section 2 are in full
agreement with those obtained in the symplectic approach. We begin by considering the
symplectic analogue of the conventional Dirac approach.

The master Lagrangian (2.1) is of the form

L =
∫

d2x a(x)αξ̇α(x) − V [ξ ] (3.1)

where

(ξα) = (f 1, f 2, A1, A2, f 0, A0) (3.2)

(aα) = (− 1
2A2, 1

2A1,− 1
2 (f 2 − A2), 1

2 (f 1 − A1), 0, 0
)

(3.3)

and

V =
∫

d2x
[
−m

2
fµf µ + f 0εij ∂

iAj + A0(εij ∂
if j − εij ∂

iAj )
]
. (3.4)

The Euler–Lagrange equations then read∫
d2y F

(0)
αβ (x, y)ξ̇β(y) = K(0)

α (x) (3.5)

where

(
K(0)

α

) = δV

δξα(x)
=




∂2A0 + mf 1

−∂1A0 + mf 2

−∂2(f
0 − A0)

∂1(f
0 − A0)

εij ∂
iAj − mf 0

εij ∂
i(f j − Aj)




(3.6)

and F
(0)
αβ is the (pre-)symplectic form [21]

F
(0)
αβ (x, y) = ∂aβ(y)

∂ξα(x)
− ∂aα(x)

∂ξβ(y)
. (3.7)

Explicitly,

F (0)(x, y) =

0 ε 0

ε −ε 0
0 0 0


 δ2(x − y) (3.8)

where ε is the matrix (2.8), and 0 is the 2 × 2 matrix. It is evident that since det F (0) = 0, the
matrix F (0) is not invertible. In fact, the rank of this matrix is 4, so that there exists two-fold
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infinity of zero-generation (left) zero modes u(0)(σ ; z), labelled by discrete indices σ = 1, 2
and the continuum label z, with components

u(0)T
x (1; z) = (0, 0, 0, 0,−1, 0)δ2(x − z) u(0)T

x (2; z) = (0, 0, 0, 0, 0,−1)δ2(x − z)

(3.9)

where the superscript T stands for transpose. Correspondingly, we have a two-fold infinity of
‘zero generation’ constraints

ϕσ (z) =
∫

d2x
∑

α

u(0)
α,x(σ, z)

δV

δξα(x)
= 0. (3.10)

Explicitly,

ϕ1(z) = − δV

δf 0(z)
= mf 0(z) − εij ∂

iAj (z)

ϕ2(z) = − δV

δA0(z)
= −εij ∂

i(f j (z) − Aj(z)).

(3.11)

Comparing with (2.6) we see that ϕ1 = ϕf and ϕ2 = ϕA. We must require these constraints
to be conserved in time,

∂0ϕσ (z) = 0 (3.12)

or ∫
d2x

∑
α

∂ϕσ (z)

∂ξα(x)
ξ̇α(x) = 0. (3.13)

These equations of motion are obtained as one of the Euler–Lagrange equations of the extended
Lagrangian3

L′ = L −
∫

d2x
∑

σ

ϕσ (z)η̇σ (z). (3.14)

The field A0 only occurs in the potential V in the form A0(z)ϕ2(z). Hence it can be absorbed
into a new dynamical variable via the shift η̇2 − A0 → η̇2. Our new set of ‘first-generation’
dynamical variables are then(

ξ (1)
α1

) = (f 1, f 2, A1, A2, f 0, η1, η2) (3.15)

and the ‘first-generation’ Lagrangian takes the form

L(1) =
∫

d2x

7∑
α1=1

a(1)
α1

ξ̇ (1)
α1

− V (1)[ξ ] (3.16)

where(
a(1)

α1
(x)
) = (− 1

2A2, 1
2A1,− 1

2 (f 2 − A2), 1
2 (f 1 − A1), 0,−ϕ1(x),−ϕ2(x)

)
(3.17)

and

V (1) =
∫

d2x
[
−m

2
fµf µ + f 0εij ∂

iAj
]
. (3.18)

The equations of motion now take the form∫
d2y F

(1)
α1,β1

(x, y)ξ̇
(1)
β1

(y) = δV (1)

δξ
(1)
α1 (x)

(3.19)

3 The minus sign is chosen for later convenience, when comparing with the Dirac quantization procedure.
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where the ‘first-generation’ symplectic form F
(1)
α1,β1

is given by

F
(1)
α1β1

(x, y) = ∂a
(1)
β1

(y)

∂ξ
(1)
α1 (x)

− ∂a(1)
α1

(x)

∂ξ
(1)
β1

(y)
(3.20)

or explicitly

F (1)(x, y) =




0 0 0 1 0 0 −∂2

0 0 −1 0 0 0 ∂1

0 1 0 −1 0 −∂2 ∂2

−1 0 1 0 0 ∂1 −∂1

0 0 0 0 0 −m 0
0 0 ∂2 −∂1 m 0 0
∂2 −∂1 −∂2 ∂1 0 0 0




δ2(x − y). (3.21)

F (1) exhibits one zero mode,

u(1)T
x (z) = (0, 0, ∂1, ∂2, 0, 0, 1)δ2(x − z). (3.22)

Noting that

(
K(1)

α

) = δV (1)

δξα

=




mf 1

mf 2

−∂2f
0

∂1f
0

εij ∂
iAj − mf 0

0
0




(3.23)

we find that the new constraint vanishes identically:∫
d2z u(1)

α1,x
(z)

δV (1)

δξ (1)(z)
= (∂1∂2f

0 − ∂1∂2f
0) ≡ 0. (3.24)

Hence the algorithm ends at this point. We now write F (1) in the form

F (1)(x, y) =
(

f M

−MT 0

)
δ2(x − y) (3.25)

where

f (x, y) =




0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 −1 0 −∂2

−1 0 1 0 0 ∂1

0 0 0 0 0 −m

0 0 ∂2 −∂1 m 0




δ2(x − y) (3.26)

and M is the 1 × 6 matrix

Mα1(x, y) =
(

− ∂ϕ2(y)

∂ξ
(1)
α1 (x)

)
=




−∂2

∂1

∂2

−∂1

0
0




δ2(x − y). (3.27)
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We next observe that det f �= 0, so that the inverse of f exists. It is readily computed to be

f −1(x, y) =




0 −1 0 −1 1
m
∂1 0

1 0 1 0 1
m
∂2 0

0 −1 0 0 0 0
1 0 0 0 0 0

− 1
m
∂1 − 1

m
∂2 0 0 0 1

m

0 0 0 0 − 1
m

0




δ2(x − y). (3.28)

The zero mode (3.22) is of the general form [21]

u(1)
α1,x

(z) =
(

6∑
B=1

∫
d2yf −1

AB (x, y)
∂ϕ2(z)

∂ξ
(1)
B (y)

, 1

)
A,B = 1, . . . , 6 (3.29)

where we label the subspace on which f −1 is defined by the indices A,B,C, . . .. As we shall
see, in the algorithm of Dirac these label the complete set of second-class constraints. The
zero mode (3.22) is the generator of gauge transformations in the sense [21] that

δξ (1)
α1

(x) =
∫

d2z u(1)
α1,x

(z)ε(z). (3.30)

With the aid of (3.29) we can readily rewrite this in terms of symplectic brackets. Let
F and G be functions of the dynamical field variables ξA. We define generalized symplectic
structures by

{F,G}∗ =
∫

d2z

∫
d2z′ ∂F

∂ξA(z)
f −1

AB (z, z′)
δG

δξB(z′)
. (3.31)

In particular,

{ξA(x), ξB(y)}∗ = f −1
AB (x, y) (3.32)

or explicitly

{f i(x), f j (y)}∗ = −εij δ2(x − y) {f i(x),Aj (y)}∗ = −εij δ2(x − y)

in agreement with the Dirac brackets in equation (2.9).
In terms of the symplectic structure (3.31) we may write (3.30) in a form which will be

convenient for later comparison:

(
δξ (1)

α1
(x)
) =

(∫
d2y

∫
d2zf −1

AB (x, y)
∂ϕ2(z)

∂ξ
(1)
B (y)

ε(z), ε(x)

)

=
(∫

d2z
{
ξ

(1)

A (x), ϕ2(z)
}∗

ε(z), ε(x)

)
. (3.33)

Explicitly,

δA1 = −∂1ε δA2 = −∂2ε

δf 0 = 0 δf 1 = 0 δf 2 = 0

δη1 = 0 δη2 = ε.

(3.34)

Recalling the redefinition η̇2 − A0 → η̇2, we see that δη2 = ε implies δA0 = −∂0ε, in
agreement with our expectations.

In appendix C we show that our results are in one-to-one correspondence with the
conventional Dirac algorithm.
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4. Symplectic embedding of master Lagrangian

It is interesting to examine the relation between the BFT embedding procedure (improved
Dirac approach) discussed in section 2 and a corresponding embedding in the symplectic
formulation. The procedure of section 2 has led to a Stückelberg Lagrangian, where the
field f µ has been gauged by the introduction of a Stückelberg scalar θ . This suggests the
introduction of an additive ‘Wess–Zumino’ term to the Lagrangian density (3.1) of the Lorentz
covariant form

LWZ = αf µ∂µθ +
β

2
∂µθ∂µθ.

Following a standard recipe [25, 26] for constructing the corresponding first-order Lagrangian,
one readily checks that the corresponding equivalent symplectic Lagrangian now reads as in
(3.1), with

(ξα) = (f 1, f 2, A1, A2, θ, πθ , f
0, A0) (4.1)

(aα) = (− 1
2A2, 1

2A1,− 1
2 (f 2 − A2), 1

2 (f 1 − A1), πθ , 0, 0, 0
)

(4.2)

and

V [A, f, θ, πθ ] =
∫

d2x

[
− m

2
fµf µ + f 0εij ∂

iAj + A0(εij ∂
if j − εij ∂

iAj )

+
1

2β
(πθ − αf 0)2 − αf i∂iθ − β

2
∂iθ∂iθ

]
. (4.3)

The Euler–Lagrange equations then read as in (3.5), with K(0) replaced by

(
K(0)

α

) = δV

δξα(x)
=




∂2A0 + mf 1 + α∂1θ

−∂1A0 + mf 2 + α∂2θ

−∂2(f
0 − A0)

∂1(f
0 − A0)

α∂if
i + β∂i∂

iθ
1
β
(π − αf 0)

εij ∂
iAj − α

β
(π − αf 0) − mf 0

εij ∂
i(f j − Aj)




(4.4)

and F
(0)
αβ the (pre-)symplectic form now replaced by

F (0)(x, y) =




0 ε 0 0
ε −ε 0 0
0 0 −ε 0
0 0 0 0


 δ2(x − y). (4.5)

As is again evident, since det F (0) = 0, the matrix F (0) is not invertible. In fact, the rank
of this matrix is 6, so that there exists two-fold infinity of zero-generation (left) zero modes
u(0)(σ, z), labelled by discrete indices σ = 1, 2 and the continuum label z, with components

u(0)T
x (1; z) = (0, 0, 0, 0, 0, 0,−1, 0)δ2(x − z)

u(0)T
x (2; z) = (0, 0, 0, 0, 0, 0, 0,−1)δ2(x − z)

(4.6)

implying the constraints

ϕ1(z) = − δV

δf 0(z)
= mf 0(z) − εij ∂

iAj (z) +
α

β
(πθ(z) − αf 0(z))

ϕ2(z) = − δV

δA0(z)
= −εij ∂

i(f j (z) − Aj(z)).

(4.7)
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We proceed as in section 3, being led to a first-level Lagrangian

L(1) =
∫

d2x

9∑
α1=1

a(1)
α1

ξ̇ (1)
α1

− V (1)[ξ ] (4.8)

with a new set of ‘first-generation’ dynamical variables in which A0 has again been absorbed
into a redefinition of η2,(

ξ (1)
α1

) = (f 1, f 2, A1, A2, θ, πθ , f
0, η1, η2) (4.9)

and(
a(1)

α1
(x)
) = (− 1

2A2, 1
2A1,− 1

2 (f 2 − A2), 1
2 (f 1 − A1), πθ , 0, 0,−ϕ1(x),−ϕ2(x)

)
(4.10)

and

V (1)[A, f, θ, πθ ] =
∫

d2x

[
− m

2
fµf µ + f 0εij ∂

iAj

+
1

2β
(πθ − αf 0)2 − αf i∂iθ − β

2
∂iθ∂iθ

]
. (4.11)

The equations of motion now take the form (3.19), where the ‘first-generation’ symplectic
form F

(1)
α1,β1

is now given by (3.20), with

F (1)(x, y) =




0 0 0 1 0 0 0 0 −∂2

0 0 −1 0 0 0 0 0 ∂1

0 1 0 −1 0 0 0 −∂2 ∂2

−1 0 1 0 0 0 0 ∂1 −∂1

0 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 − α

β
0

0 0 0 0 0 0 0 −κ 0
0 0 ∂2 −∂1 0 α

β
κ 0 0

∂2 −∂1 −∂2 ∂1 0 0 0 0 0




δ2(x − y) (4.12)

where κ = m − α2/β, and K(1) is given by

(
K(1)

α

) = δV (1)

δξα

=




mf 1 + α∂1θ

mf 2 + α∂2θ

−∂2f
0

∂1f
0

α∂if
i + β∂i∂

iθ
1
β
(πθ − αf 0)

εij ∂
iAj − α

β
(πθ − αf 0) − mf 0

0
0




. (4.13)

F (1) exhibits one zero mode,

u(1)T
x (1; z) = (0, 0, ∂1, ∂2, 0, 0, 0, 0, 1)δ2(x − z) (4.14)

implying however an identically vanishing constraint. For α2

β
= m there are two further zero

modes:
u(1)T

x (2; z) = (0, 0, 0, 0, 0, 0, 1, 0, 0)δ2(x − z) (4.15)

u(1)T
x (3; z) =

(
∂1, ∂2, 0, 0,

α

β
, 0, 0, 1, 0

)
δ2(x − z). (4.16)
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The zero modes u(1)T
x (2; z) and u(2)T

x (3; z) both imply the constraint ϕ1 = 0 in (4.7), now
evaluated for κ = m − α2

β
= 0:

ϕ1 ≡ εij ∂
iAj − α

β
πθ . (4.17)

The corresponding potential (4.11) now takes the form

V (1)[A, f, θ, πθ ] =
∫

d2x

[
−m

2
fif

i +
1

2β
π2

θ − αf i∂iθ − β

2
∂iθ∂iθ − f 0ϕ1

]
. (4.18)

We may thus absorb the term f 0ϕ1 in the potential into a redefinition of the variable η1:
η̇1 − f 0 → η̇1. Correspondingly,(

ξ (1)
α1

) = (f 1, f 2, A1, A2, θ, πθ , η1, η2) (4.19)

and K(1) is given by

(
K(1)

α1

) = δV (1)

δξα1

=




mf 1 + α∂1θ

mf 2 + α∂2θ

−∂2f
0

∂1f
0

α∂if
i + β∂i∂

iθ
1
β
(πθ − αf 0)

0
0




(4.20)

F (1)(x, y) =
(

f M

−MT 0

)
δ2(x − y) (4.21)

where

f (x, y) =

0 ε 0

ε −ε 0
0 0 −ε


 (4.22)

and M is the 2 × 6 matrix

Mα1(x, y) =




0 −∂2

0 ∂1

−∂2 ∂2

∂1 −∂1

0 0
− α

β
0




δ2(x − y). (4.23)

In the form (4.21), F (1) still has two zero modes:

uf
x (z) =

(
∂1, ∂2, 0, 0,

α

β
, 0, 1, 0

)
δ2(x − z)

uA
x (z) = (0, 0, ∂1, ∂2, 0, 0, 0, 1)δ2(x − z).

(4.24)

One readily checks that they imply identically vanishing constraints:

uf (z) · K(1) ≡ 0 uA(z) · K(1) ≡ 0.

They therefore generate the following gauge transformation:

δξα1(x) =
∫

d2z
[
uf

α1,x
(z)εf (z) + uA

α1,x
(z)εA(z)

]
(4.25)
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or explicitly

δA1 = −∂1εA δA2 = −∂2εA

δf 1 = −∂1εf δf 2 = −∂2εf

δθ = α

β
εf δπθ = 0

δη1 = εf δη2 = εA

. (4.26)

Recalling the relabelling η̇1 − f 0 → η̇1 and η̇2 − A0 → η̇2, we see that the transformations
for ηi imply

δf 0 = −∂0εf δA0 = −∂0εA

in accordance with our expectations: δf µ = −∂µεf , δAµ = −∂µεA and δθ = εf which are
exactly the same as transformation (2.30) obtained from the improved DQM when we assign
the coefficients for α = β = m.

5. Conclusion

It has been the primary objective of this paper to illustrate in terms of a non-trivial model
as described by the master Lagrangian of Deser and Jackiw [26], how the embedding of
Hamiltonian systems with first- and second-class constraints into an extended gauge theory is
realized in the context of the improved Dirac quantization method (DQM) on one hand, and
the improved symplectic approach, on the other.

Alternatively, rather than proceeding iteratively as one does in the improved DQM
approach, we have simplified the calculation in the symplectic case by making use of
manifest Lorentz invariance in our ansatz for the Wess–Zumino term to be added to the
master Lagrangian, and then reformulating the problem in terms of an equivalent first-order
Lagrangian.

Just as in the case of the improved DQM procedure, the symplectic embedding procedure
requires the introduction of an even number of additional fields, which, following the Faddeev–
Jackiw prescription [20], can be chosen to be canonically conjugate pairs. This is in line with
the fact that the number of second-class constraints is always even, and that the improved
DQM embedding procedure requires that phase space be augmented by one degree of freedom
for each secondary constraint. This fact has not been recognized in a recent paper on the
subject [24], where in our notation, πθ is effectively taken to be a function of Ai, πi and θ .
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Appendix A. BFT-embedding into a fully first-class system

In this appendix, we demonstrate how the improved DQM can be used in order to turn the
model defined by the master Lagrangian into a fully first-class system on the Hamiltonian level.
In order to extract the true second-class constraints, we redefine the secondary constraint ϕA

as follows:

ωA = ∂iπA
i − 1

2εij ∂
if j + 1

2εij ∂
iAj . (A.1)
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The nonvanishing Poisson brackets are then given as{
φ

f

0 (x), ϕf (y)
} = −mδ2(x − y){

φ
f

i (x), φA
j (y)

} = εij δ
2(x − y){

φA
i (x), φA

j (y)
} = −εij δ

2(x − y)

(A.2)

which show that φA
0 and ωA are first class.

Redefining the constraints,

(�1,�2,�3,�4,�5,�6) =
(
φ

f

0 , ϕf , φ
f

1 , φ
f

2 , φA
1 , φA

2

)
(A.3)

we obtain the second-class algebra


αβ = {�α,�β} =

−mε 0 0

0 0 ε

0 ε −ε


 δ2(x − y) (A.4)

where ε is the Levi-Civita tensor with ε12 = 1 and 0 is the 2 × 2 null matrix.
The consistent quantization of the self-dual model is then obtained in terms of the

following nonvanishing Dirac brackets:

{f 0(x), f i(y)}D = − 1

m
∂x
i δ2(x − y) {f i(x), f j (y)}D = −εij δ2(x − y)

{f i(x),Aj (y)}D = −εij δ2(x − y)
{
Ai(x), πA

j (y)
}

D
= 1

2
δi
j δ

2(x − y)

{
πA

i (x), πA
j (y)

}
D

= 1

4
εij δ

2(x − y)
{
π

f

i (x), πA
j (y)

}
D

= −1

4
εij δ

2(x − y)

{
f i(x), π

f

j (y)
}

D
= 1

2
δi
j δ

2(x − y)
{
f 0(x), πA

i (y)
}

D
= − 1

2m
εij ∂

j
x δ2(x − y){

A0(x), πA
0 (y)

}
D

= δ2(x − y).

(A.5)

Now, let us extend phase space further to embed all the second-class constraints into the
corresponding first-class ones, while in section 2 we partially embed them by eliminating the
second-class ones originated from the symplectic structure of the Chern–Simons term.

To embed all the second-class constraints into the first-class ones by following the
improved DQM as in section 2, we first introduce three pairs of auxiliary fields such as
(θ1, θ2), (σ 1, σ 2) and (ρ1, ρ2) satisfying the canonical Poisson brackets

{θ1(x), θ2(y)} = {σ 1(x), σ 2(y)} = {ρ1(x), ρ2(y)} = δ2(x − y) (A.6)

which define ωαβ in (2.10) as

ωαβ =

ε 0 0

0 ε 0
0 0 ε


 . (A.7)

From the strong involution relations {�̃α, �̃β} = 0 and the ansatz of the form (2.13), we obtain
a solution Xαβ explicitly as

Xαβ =




√
m 0 0 0 0 0

0
√

m 0 0 0 0
0 0 −1 0 −1 0
0 0 0 1 0 −1
0 0 0 0 1 0
0 0 0 0 0 1




. (A.8)
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As a result, we convert all the second-class constraints to the first-class ones,

�̃i = �i +
√

mθi �̃i+2 = �i+2 + (−1)iσ i − ρi �̃i+4 = �i+4 + ρi (A.9)

with i, j = 1, 2 satisfying the rank-0 algebra: {�̃α, �̃β} = 0.
Similarly, we obtain for the improved first-class fields in the extended phase space

f̃ 0 = f 0 +
1√
m

θ2 f̃ i = f i +
1√
m

∂iθ1 + (−1)iεij σ
j

Ã0 = A0 Ãi = Ai + (−1)iεij σ
j + εijρ

j

π̃
f

0 = π
f

0 +
√

mθ1 π̃
f

i = π
f

i +
1

2
(−1)iσ i − 1

2
ρi

π̃A
0 = πA

0 π̃A
i = πA

i − 1

2
√

m
εij∂

j θ1 +
1

2
ρi.

(A.10)

From these, it can readily be shown that in the master self-dual model the Poisson brackets in
the extended phase space are exactly equivalent to the Dirac brackets (A.5) [8, 28].

On the other hand, since an arbitrary functional of the improved first-class fields is also
first class, we can also directly obtain the desired first-class Hamiltonian4 H̃ corresponding to
the Hamiltonian Hp in equation (2.5) via the substitution f µ → f̃ µ, Aµ → Ãµ, π

f
µ → π̃

f
µ

and πA
µ → π̃A

µ :

H̃p = Hc +
√

mθ1∂if
i + θ2

(
−√

mf 0 +
1√
m

εij ∂
iAj

)
+ mf i(−1)iεijσ

j

− (−1)if 0∂iσ
i + (f 0 − A0)∂iρ

i − √
mθ1(−1)iεij ∂

iσ j

+ θ2

(
−1

2
θ2 +

1√
m

∂iρ
i − (−1)i

1√
m

∂iσ
i

)
+

m

2
(σ i)2 − 1

2
∂iθ

1∂iθ1. (A.11)

Next, we construct the Hamilton equations of motion for these first-class fields,

d

dt
f̃ 0 = ∂if̃ i d

dt
f̃ i = −mεij f̃ j +

1

m
∂i(εjk∂

j Ãk)

d

dt
Ã0 = 0

d

dt
Ãi = −mεij f̃ j + ∂iÃ0.

(A.12)

Here note that the equation of motion for f̃ 0 in equation (A.12) can be rewritten in terms of
covariant form, ∂µf̃ µ = 0, from which one can obtain the explicit form for f̃ µ, the duality
relation [26]: f̃ µ = 1

m
εµνρ∂νÃρ , now written in terms of the improved first-class (gauge

invariant) fields in the extended phase space.

Appendix B. BFT construction of involutive Hamiltonian

It is instructive to construct H̃ c obtained in (2.16), following the usual BFT procedure for
obtaining the involutive Hamiltonian directly [6]. The procedure assumes that the involutive
Hamiltonian can be written as the infinite series,

H̃ = Hc +
∞∑

n=1

H(n) H (n) ∼ (�i)n (B.1)

4 Similar to section 2, we can also construct the involutive Hamiltonian H̃ directly by following the method of
Batalin et al [6] and thus demonstrate the equivalence of H̃p up to total derivatives.
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satisfying the initial condition H̃
(
f µ,Aµ, π

f

0 , πA
0 ; �i = 0

) = Hc. The general solution [6]
for the involutive Hamiltonian H̃ is then given by

H(n) = − 1

n

∫
d2x d2y�i(x)εijX

jk(x, y)G
(n−1)

k (y) (B.2)

where the generating functionals G(n) are

G
(0)
i = {

�
(0)
i , Hc

}
G

(n)
i = {

�
(0)
i , H (n)

}
O +

{
�

(1)
i , H (n−1)

}
O. (B.3)

Here the symbol O denotes that the Poisson brackets are calculated among the original
variables.

Explicit calculations for our model yield

G
(0)
1 = mf 0 − εij ∂

iAj G
(0)
2 = m∂if

i (B.4)

which are substituted in (B.2) to obtain H(1):

H(1) =
∫

d2x

[
mθ∂if

i − 1

m
πθ(mf 0 − εij ∂

iAj )

]
. (B.5)

The generating functionals for the next generation are

G
(1)

1 = πθ G
(1)

2 = m∂i∂
iθ (B.6)

and yield

H(2) =
∫

d2x

[
− 1

2m
π2

θ − m

2
∂iθ∂iθ

]
. (B.7)

There are no further iterative higher order Hamiltonians, and thus the total Hamiltonian can
be written as

H̃ = Hc + H(1) + H(2)

=
∫

d2x

[
− m

2
fµf µ + f 0εij ∂

iAj + A0εij (∂
if j − ∂iAj )

+ mθ∂if
i − f 0πθ +

1

m
πθεij ∂

iAj − 1

2m
π2

θ − m

2
∂iθ∂iθ

]
(B.8)

which is the same as the first-class Hamiltonian (2.16) up to a total derivative. This confirms
the equivalence of the H̃ c (2.16) of the involutive Hamiltonian (B.8).

Appendix C. Hamiltonian–Dirac quantization of the symplectic Lagrangian

It is instructive to compare the gauge transformations (3.34), which are obtained from the
analysis of the symplectic scheme, with the Hamiltonian description.

Appendix C.1. The original master Lagrangian

Our starting point is again the first-order Lagrangian (3.1). The canonical momenta conjugate
to ξα are given by

Pα = aα (C.1)

and correspondingly we have six primary constraints, which we write in the canonical form

φα ≡ Pα − aα ≈ 0. (C.2)
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The corresponding primary Hamiltonian governing the time development of the system [1] is
thus given by

Hp =
∑

α

∫
d2x Pαξ̇α(x) − L +

∑
α

∫
d2x vαφα

= V [ξ ] +
∑

α

∫
d2x vαφα (C.3)

where vα are Lagrange multipliers (after suitable redefinition), and V [ξ ] is the potential (3.4).
With the above ‘canonical’ form for the primary constraints,we have for the corresponding

Poisson brackets

{φα(x), φβ(y)} = ∂aβ(y)

∂ξα(x)
− ∂aα(x)

∂ξβ(y)
≡ F

(0)
αβ (x, y). (C.4)

As we have seen, this matrix is not invertible, and possesses in fact ‘two’ zero modes5. They
are obtained as usual by requiring the persistence in time of the primary constraints, and
are found to be just ϕ1(z) and ϕ2(z), defined in equation (3.11). They represent the first
generation of secondary constraints. There are no further (higher generation) constraints, and
the algorithm ends at this point. We now collect all the constraints into a single ‘vector’,

(�A) = ({φα}, ϕ1, ϕ2). (C.5)

We correspondingly write for the second-class constraints(
�

(2)

Ā

) = ({φα}, ϕ1). (C.6)

The range of values that Ā takes is implicit in the notation. It is readily recognized that,
because of the ‘canonical’ form of the primary constraints,

{�A(x),�B(y)} =

f (x, y)

(
− ∂ϕ2(y)

∂ξĀ(x)

)
(

∂ϕ2(y)

∂ξB̄(x)

)
0


 = F (1)(x, y) (C.7)

with

fĀB̄(x, y) = {
�

(2)

Ā
(x),�

(2)

B̄
(y)
}

the elements of matrix (3.26). Since the submatrix f , being constructed from the second-class
constraints, is invertible, we may define the ‘Dirac brackets’ in the conventional way, as

{F,G}D = {F,G} −
6∑

Ā,B̄=1

∫
d2z′

∫
d2z
{
F,�

(2)

Ā
(z)
}
f −1

ĀB̄
(z, z′)

{
�

(2)

B̄
(z′),G

}

=
∫ ∫

d2z d2z′ δF

∂ξĀ(z)
f −1

ĀB̄
(z, z′)

δG

∂ξB̄(z′)
.

Hence the Dirac brackets coincide with the generalized Poisson brackets (3.31). In particular,
choosing for F the coordinates ξ (1)

α1
, and for G the generator of the gauge transformation on

the Hamiltonian level,

G =
∫

d2y
[
πA

0 (y)ε1(y) + ϕ2(y)ε2(y)
]

we recover the gauge transformation (3.34) upon using the Lagrangian restriction on the gauge
parameters discussed before.

5 In order to simplify the language, we do not say ‘two-fold infinity’ of zero modes.
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Appendix C.2. The embedded master Lagrangian

From the Hamiltonian point of view, the symplectic Lagrangian (3.1) implies again the primary
constraints (C.2) with (4.1)–(4.11), as well as two additional primary constraints

φθ ≡ Pθ − πθ ≈ 0

and

φπθ ≡ Pπθ
≈ 0

where Pθ ,Pπθ are the momenta conjugate to θ and πθ , respectively. The canonical
Hamiltonian has the characteristic feature of being given just by the symplectic potential.
Hence we have for the primary Hamiltonian

Hp = V [A, f, πθ , θ ] +
∫

d2z
∑

σ

vαφα.

The constraints φA
i ≈ 0, φ

f

i ≈ 0, φθ ≈ 0, φπ ≈ 0 fix the Lagrange multipliers vi
A = 0, vi

f =
0, vθ = 0, vπ = 0:

v
f

i = −mεijf
j − ∂if

0 − αεij ∂
j θ vA

i = −mεijf
j − ∂iA

0 − αεij ∂
j θ

(C.8)
vθ = 1

β
(π − αf 0) vπ = −α∂if

i − β∂i∂
iθ.

We recognize that the elements of F (0) are just the Poisson brackets of the primary
constraints: F

(0)
αβ = {φα, φβ }. The usual Dirac algorithm leads to the secondary constraints

ϕa ≈ 0, a = 1, 2, which for α2/β = m are both found to have identically vanishing Poisson
brackets with the primary Hamiltonian,after making use of the explicit expressions for the fixed
Lagrange parameters. Hence no new constraints are generated, and we have in the final stage
two first-class primary and two first-class secondary constraints,generating in the usual manner
the extended gauge symmetry of the Hamiltonian. It is interesting that in the symplectic
approach we directly obtain the more restricted symmetry of the Lagrangian.
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